Microelectronics for Future RHIC Detectors

RHIC Detector Workshop – Nov. 13-14, 2001
Paul O'Connor
BNL

Outline

- Survey of present RHIC experiments
- Microelectronics Trends 1991 2001
 - CMOS scaling
 - Advances in packaging, PCB, assembly technology
- Power and Interconnect

Custom monolithic front ends

- Can be efficiently mass-produced with excellent economy of scale:
 - E.g., maskset + 10 wafers ~ \$300K, 1000 chips/wafer
 - Additional wafer ~ \$5K
 - Incremental cost < \$10/chip</p>
 - Chip may have 16 128 channels
- Can be located close to dense detector electrode arrays
 - pixels, micropattern & segmented cathode designs
- Can combine functions on single chip, replacing PCB/hybrid/cable connections with lower cost on-chip connection
- Can reduce power*

Advantages of monolithic realization

hybrid shaper

128-channel monolithic front end chip

> hybrid preamplifier

Improvement over hybrid + rack-based system:

Cost	X 200
Power:	X 10 ³
Volume:	X 2*10 ⁶

Monolithic also adds functionality:

- cal. pulse distribution
- sample/hold
- multiplexing

Microelectronics in RHIC 2001

- STAR
 - TPC
 - CMOS 1.2 μm P/S, SCA, packaged
 - SVT
 - Bipolar P/S, CMOS 1.2 mm SCA, 240-channel ceramic hybrid
- PHENIX
 - MVD
 - 1.2 μm CMOS P/S, AMU/ADC, ceramic MCM
 - EMCAL
 - 1.2 μm CMOS integrator/VGA/TAC/sum, AMU/ADC, packaged
 - Pad chamber
 - 1.2 μm CMOS P/S/D, 1.0 μm CMOS DMU, packaged

Microelectronics in RHIC 2001 (con't)

- PHENIX con't.
 - Drift Chamber
 - Bipolar A/S/D, 0.8 μm CMOS TDC, packaged
 - Time Expansion Chamber
 - 1.2 μm CMOS P/S, FADC, 1.0 μm DMU packaged
 - RICH
 - 1.2 μm CMOS integrator/TAC, AMU/ADC, packaged
 - Muon tracker
 - 1.2 μm CMOS P/S, AMU/ADC packaged
- PHOBOS
 - Si pad
 - 1.2 μm CMOS (VA-HDR1 from IDE), chip-on-board

TEC-TRD Preamp/Shaper

Block Diagram

A. Kandasamy, E. O'Brien, P. O'Connor, W. VonAchen, "A monolithic preamplifier-shaper for measurement of energy loss and transition radiation" IEEE Trans. Nucl. Sci. 46(3), June 1999, 150-155

Die Layout

X-ray Response

TEC Front-End Card

SVT Preamp/Shaper

Die Layout

Output Waveform

SVT 240-channel multi-chip module

D. Lynn et al., "A 240 channel thick film multi-chip module for readout of silicon drift detectors", NIM A439 (2000), 418 - 426

Microelectronics in RHIC 2001 – Summary

- Monolithics are used to read out all detector types:
 - Semiconductor
 - Gas avalanche
 - Scintillator/PMT
- About 0.5M channels instrumented with monolithic electronics
- About 17 custom chips have been developed
- Designs done by national laboratories (13), university groups (2), industry (3)

Custom Monolithics – technology options

Standard CMOS

- Highest integration density
- Suitable for most analog designs (low voltage issues for deep submicron)
- Best for combining analog and digital
- Widely available
- Short life cycle (2 years/generation)

Bipolar

- Workhorse of "old" analog
- Limited vendor availability
- Speed/power advantage over CMOS (diminishing)
- Low integration density

BiCMOS

Complex process, expensive

SiGe

- Increasing use driven by RF circuits
- Interesting for high frequency work
- Silicon on insulator (SOI)
 - Modest speed advantage for digital
 - Drawbacks for analog
 - Rad-hard

GaAs

- Digital, RF only

CMOS layout examples

Analog Digital

CMOS Scaling

- Driven by digital VLSI circuit needs
- •Goals: in each generation:
 - 2X increase in density
 - 1.5X increase in speed

Control short-channel effects, threshold fluctuation

< 1 failure in 10⁷ hours

CMOS Technology Roadmap

Year	85	88	91	94	97	00	02	04	07	10	13
Min. feature size [μm]	2	1.5	1.0	0.7	0.5	0.35	0.25	0.18	0.13	0.10	0.07
Gate oxide [nm]	44	33	22	16	11	7.7	5.5	4.0	2.9	2.2	1.6
Power supply [V]	5	5	5	5	5/3.3	3.3	2.5	1.8	1.2	1	.7
Threshold voltage [V]	1.0	0.9	0.8	0.7	0.6	0.5	0.45	0.4	0.3	0.3	0.3
·····conoid voltage [v]	1.0	0.0	0.0	0.1	0.0	0.0	0.10	0.1	0.0	0.0	0.0

IBM Cu-11 Process (Blue Logic)

 IBM Corp.'s new CMOS 75 process for manufacturing ICs uses copper for its six levels of interconnections, and has effective transistor channel-lengths of only 0.12 µm. It is the first commercial fabrication process to use copper wires [see "The Damascus connection," p. 25].

Section showing Cu-11 copper and low-k dielectric process.

- L_{eff} =0.08 μm, L_{drawn} =0.11 μm
- Up to 40 million wireable gates
- Trench capacitor embedded DRAM with up to 16 Mb per macro
- Dense high-performance,comp lable SRAMs
- Power supply: 1.2 V with 1.5 V opt on
- I/O power supply:3.3 V(dual oxide option)/
- 2.5 V(dual oxide option)/1.8 V/1.5 V
- Power dissipation of 0.009 μW/MHz/gate
- Gate delays of 27 picoseconds (2-input NAND gate)
- · Seven levels of copper for global routing
- Low-k dielectric for high performance and reduced power and noise
- HyperBGA (flip chip):2577 total leads

Technology features for low-noise analog circuits

- High g_m/C_{gs} ratio (f_T)
- Low $\gamma(\gamma = g_m * R_n)$
- Low 1/f noise
- High input impedance device
- High g_m/g_d
- Controllable sub-nA current sources
- High-quality floating capacitor
- Good switch device
- Excellent AC isolation
- High supply voltage
- ESD-tolerant
- Radiation-tolerant

Color key:

improvement with scaling

no improvement expected

degradation with scaling

Noise and power vs. scaling

4 detector scenarios for scaling study

System	$\mathbf{C}_{_{det}}$	t.	P	I	Detector	Typical Application
<u>a</u>	30	75	10	.001	Wire Chamber	Tracking, Imaging
<u>b</u>	15	25	0.2	10	<u>Si</u> Strip	Tracking
<u>c</u>	0.3	25	0.02	1	Si Pixel	Tracking
<u>d</u>	3	2500 - 500*	10	0.01	Semiconductor	Spectroscopy
UNITS	pF	ns	mW	nA	-	-

Noise vs. scaling

(power held constant)

Power vs. scaling

(noise held constant)

Dynamic range vs. scaling

Gate tunneling current

- Gate current expected to increase 100 –
 200 x per generation below 0.18 μm
- $J_{ox} \sim 100 \text{ A/cm}^2 \text{ projected for } L_{min} = 0.1$ μm generation with nitrided SiO₂
- Considered tolerable for digital circuits (total gate area per chip ~ 0.1 cm²)
- Typical CSA input FET would have I $_{G}$ ~ 1 10 μ A; ENCp ~ 2000 7000 rms eat 1 μ sec

SiO₂ gate leakage current (Lo et al., Electron Dev. Letters 1997)

Monolithics in scaled CMOS

Analog:

- Noise limits not changing significantly
- Power can be reduced
- Design effort required for high dynamic-range systems
- Increased integration density, but not as much as digital

Digital:

- Big increase in integration density
- Reduction in power
- Big increase in clock frequency
- Need to manage design complexity

Analog/digital co-existence

- Simulation capability limited
- Anticipate the need to iterate

Power

Example: CMS Tracker

- Total # channels: 75,500 FE chips x 128 = ~10M
- Power/FE: 2.3 mW/channel
- Pwr/ch data TX: ~0.6 mW/channel
- Supply: 2.5 V and 1.25 V, P_{tot}= ~30 kW
- Total FE currents: IDD₁₂₅: ~7.5 kA, IDD₂₅₀: ~6.5 kA
- Remote supplies
- # of service cables: 1,800
- Power in the cables: > 75 kW
- Cross section of power cables and cooling pipes directly proportional to power dissipated!

Interconnect: Technology

- Significant advances in packaging, PCB, assembly technology
 - Thin- and fine-pitch leaded SMT components; BGAs; chip-scale packages; packages with low thermal resistance
 - Flip-chip and chip-on-board assembly
 - Microvias, thin-core laminates, flex for high density integration (HDI)
 - Passive component miniaturization, arrays

Cellular telephone handset trends

1991 cell phone

- ¾ pound
- 12V battery
- 700 components
- 8 hrs assembly time
- \$600

• 2001 cell phone

- 2 oz.
- 3V battery
- 4 –5 modular components + passives integrated in substrate
- 15 minute assembly time
- < \$150 or free</p>

Figure 4 - Capacitors Ranging from 1206, 0805, 0603. 0402 and 0201

This is the world's first WRIST CAMERA. It features 1 MB of memory to hold up to 100 images.

Standard packages of 2001

0.5 mm max.

Mounted Height

0.3 mm dia
Solder Balls

Nolded Encapsulant

Amkor thin BGA

National microSMD 1.41 x 1.67 x 0.85mm body size (8L) "Silicon Dust"

Stacked chip-scale package

Interconnect issues in monolithic front ends

- Detector -> preamplifier
 - Lowest possible capacitance
 - Ease of assembly
 - Diagnostics
 - Repair/rework
- Front end -> ADC
 - Efficient use of expensive "analog" interconnect
- ADC -> off-detector processing
 - Efficient use of bandwidth for cost/power control
 - See:

http://snowmass2001.web.cern.ch/Snowmass2001/Docs/Marchioro%20Snowmass%202001.pdf

System-level power distribution

Detector-preamplifier connection can't be designed after-the-fact!

Cost of interconnect

Distance From Chip Center (m)

Summary

- RHIC detector upgrade programs can take advantage of a decade of progress in microelectronics.
- Up-front attention to power and interconnect issues is essential (avoid cable/connector/cooling problems after installation):
 - Look for opportunities to save power at all levels:
 - Technology
 - Circuit topology
 - Architecture
 - Algorithms
 - Data compression
 - For matrix-type detectors, design readout plane together with FEE
 - Maximize the use of on-chip interconnect
 - Don't transfer analog data from chip-to-chip
 - Zero-suppress on-detector
 - Make efficient use of data transmission channel off-detector